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1 Introduction

A GCM cloud parameterization typically predicts the
cloud fraction and mean cloud properties in each model
layer containing cloud. To calculate the radiative impact of
these clouds in a GCM column requires the specification
of the overlap of the different cloud layers. Early schemes
assumed random overlap between model cloud layers,
but this suffers from an unphysical dependence on model
vertical resolution, and even randomly overlaps adjacent
cloudy model layers within the same physical cloud. An
improvement is the maximum-random overlap assump-
tion (Tian and Curry, 1989), which assumes maximal
overlap between adjacent cloudy layers1. However, the
scheme still retains some resolution dependence because it
relaxes to random overlap between non-contiguous cloud
layers, regardless of the thickness of the intervening clear
layer. Furthermore, it is reasonable to expect some loss of
correlation with height within deeper clouds due to verti-
cal wind shear, for example.

Recently, based on radar observations (Hogan and
Illingworth, 2000; Mace and Benson-Troth, 2002) and

∗Correspondence to: Dr. Peter Norris, Global Modeling and Assimi-
lation Office, NASA/GSFC, Code 610.1, Greenbelt, MD 20771, USA.
Email: peter.m.norris@nasa.gov
1The more commonly used variant of the maximum-random overlap
scheme due to Geleyn and Hollingsworth (1979) has a somewhat more
complicated interpretation. It will not be discussed further in this paper.

cloud-resolving model studies (Oreopoulos and Khairout-
dinov, 2003; Räisänen et al., 2004; Pincus et al., 2005), a
more physical approach has been proposed, called “gen-
eralized overlap”, in which the combined cloud fraction
of any two layers can assume any value between those
defined by the extreme assumptions of perfect maximum
and random overlap. This is achieved through the intro-
duction of a correlation parameter that can take values
between zero for random overlap and one for maximum
overlap and whose value drops exponentially as a function
of the separation distance between the cloudy layers.

This concept can be also extended to the rank corre-
lation of cloud condensate amount between layers. This
governs the likelihood that a large water content in one
layer of a GCM column (relative to that layer’s water con-
tent range) will be paired with a relatively large water
content in another layer, and likewise for relatively small
water contents. Räisänen et al. (2004) and Pincus et al.
(2005) find that this rank correlation also decreases expo-
nentially with layer separation. The existence of such con-
densate amount correlations between cloudy layers affects
both radiative transfer and precipitation/re-evaporation
processes (Jakob and Klein, 1999).

This paper is concerned with formalizing and gener-
alizing these concepts of “generalized overlap” and “con-
densate rank correlation” within the context of PDF-based
statistical cloud parameterizations (e.g., Smith, 1990; Xu
and Randall, 1996; Tompkins, 2002; Larson et al., 2001),
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2 NORRIS ET AL.

which represent the unresolved variabilty within a model
gridbox statistically using PDFs (probability density func-
tions). In doing so, we hope to provide a framework
for representing realistic three-dimensional sub-gridscale
variability in GCM gridcolumns, leading to improved
cloud and radiation parameterizations, and as a first step
towards transferring the statistical information content of
high-resolution satellite cloud observations into GCMs
and global analyses.

The paper is organized as follows: Section 2 intro-
duces some key notation, including our primary mois-
ture variable, the total saturation ratio. Section 3 dis-
cusses our assumptions, including our initial restriction
to the case of water clouds only. It also introduces sub-
gridscale statistical distribution functions for layer mois-
ture and temperature. Section 4 introduces the connec-
tion between gridcolumn cloud fraction and statistical
functions called copulas, which we use to describe the
rank correlation of saturation ratio between model lay-
ers. Section 5 provides a brief introduction to copulas,
their utility and properties. Section 6 continues to explore
the relationship between cloud fraction and copulas, pre-
senting some simple special cases. Section 7 generalizes
our use of copulas to include sub-gridscale temperature
variability as well, so that we can move beyond simple
cloud fraction evaluation to more complicated gridcol-
umn quantities, such as radiative fluxes. Section 8 dis-
cusses the derivation of the higher order copulas needed
to model multi-layer temperature and moisture correla-
tions, and introduces the Gaussian copula in particular.
Section 9 obtains a method for inference of Gaussian cop-
ula parameters from samples of temperature and moisture
within a gridcolumn domain. These samples will be pro-
vided by a cloud resolving model (CRM) simulation in
this paper, but can be related to high-resolution remote
sensing data in the future. Section 10 discusses evalua-
tion of gridcolumn averages within our framework. Sec-
tion 11 details the generation of random subcolumns from
our copula-based framework. Unlike the GCM gridcol-
umn from which they are drawn, these subcolumns are
horizontally uniform and therefore simple to use, but an
ensemble of them can approximate the three-dimensional
variability of the gridcolumn and so can be used for
Monte-Carlo evaluation of gridcolumn mean properties.
Subcolumn generators are provided for the Gaussian cop-
ula, as well as for simpler random and maximum overlap
cases that still retain realistic intra-layer temperature and
moisture correlations. Section 12 provides a detailed anal-
ysis of the application of our copula-based framework to
a single CRM-generated frontally disturbed test case over
the ARM (Atmospheric Radiation Measurement) South-
ern Great Plain site. This preliminary test demonstrates
the good performance of the new method for both cloud
fraction and radiative property assessment, as compared
to random and maximum overlap methods and another
more accurate method that preserves the exact geometric
overlap of the cloud field but removes inter-layer in-cloud
property correlations. Finally, Section 13 summarizes our

conclusions and provides a suggested roadmap for prac-
tical application of the copula-based framework to GCM
cloud and radiation parameterization. We also suggest the
assimilation of high-resolution satellite data into GCMs
and global analyses as another important potential appli-
cation of the new framework.

2 Notation

Consider an air parcel of volume V containing massesmd,
mv and mc of dry air, water vapor, and water condensate.
The corresponding “densities” are ρd,v,c ≡ md,v,c/V . The
“total water density” is ρt ≡ ρv + ρc and the “parcel
density” is ρ ≡ ρd + ρt. The partial pressures of dry air
and water vapor are pd = ρdRdT and ev = ρvRvT , where
Rd and Rv are the gas constants of water vapor and dry
air and T is the parcel temperature. The parcel pressure
is p = pd + ev = ρ∗RdT , where ρ∗ ≡ ρd + ρv/ε will be
called the “virtual density” and ε ≡ Rd/Rv ≈ 0.622.

In this paper we will use “moisture contents”

qv,c,t = ρv,c,t/ρ∗, (1)

since the saturation vapor content qs ≡ ρs/ρ∗ =
εes(T )/p, where es(T ) is the saturation vapor pres-
sure over a plane pure liquid water surface, has a
particularly simple but exact form in this normalization2.

Next, define the total saturation ratio3 as

S ≡ qt/qs, (2)

i.e., the total moisture content scaled by the saturation
vapor content. This is similar to the “relative humidity”,
expressed as a fraction, but uses the total water content,
not the vapor content in the numerator. We will use S
instead of qt in our analysis, since its maximum value
will seldom be much in excess of unity. This means that
its dynamic range is generally smaller than qt and it will
therefore tend to yield a more well-behaved statistical
analysis (see, e.g., Dee and da Silva, 2003).

Finally, note that we will use boldface to represent
vectors, e.g., X , and San Serif font to represent matrices,
e.g., X.

3 Assumptions

This work has an intentionally narrow focus defined by the
following assumptions, most of which are quite common
in GCM cloud parameterizations:

2Vapor and condensate densities are more typically normalized by
ρd to yield “mixing ratios” qmix

v,c,t = ρv,c,t/ρd, or by ρ to yield
so-called “specific” quantities qspc

v,c,t = ρv,c,t/ρ. In practice, for the
normal atmospheric conditions studied in this paper, ρ∗ will sel-
dom be more than a few percent from either ρd or ρ, and so
there will be rather negligible difference between qmix, qspc, and
q. Furthermore, it is a simple matter to convert between these
variables. Specifically, qv,c = qmix

v,c/(1 + qmix
v /ε) = q

spc
v,c/(1 + ε′qspc

v −
q

spc
c ), qmix

v,c = qv,c/(1− qv/ε) and qspc
v,c = qv,c/(1− ε′qv + qc), where

ε′ ≡ 1/ε− 1.
3Or just the “saturation ratio”.
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REPRESENTING CLOUD FIELDS USING COPULAS 3

(A1) Consider a single GCM gridcolumn, or a con-
tiguous vertical section thereof, comprised of K layers,
numbered k = 1 . . .K, top to bottom. Assume each layer
to be sufficiently shallow that all its properties can be
taken as vertically uniform. Clearly this is unphysical for
pressure, but assume that no significant error is made by
using the layer mid-point pressure in all calculations that
follow.

(A2) Assume the layer pressure p is also horizontally
uniform, whereas the layer temperature T and saturation
ratio S are horizontally non-uniform4 and distributed
according to cumulative distribution functions FTk

and
FSk

for layer k. Specifically, FTk
(t) and FSk

(s) are
the fractions of the layer volume for which Tk ≤ t and
Sk ≤ s. By assumption (A1), these volume fractions are
identical to the respective areal fractions of the layer, as
seen from directly above (i.e., from zenith). We therefore
employ the shorthand FTk

(t) = Fr(Tk ≤ t) and FSk
(s) =

Fr(Sk ≤ s), where Fr(A) is the areal fraction of the
gridcolumn, as viewed from zenith, for which condition A
holds. Note that FTk

is non-decreasing and has FTk
(0) =

0 and FTk
(∞) = 1, and similarly for FSk

. We further
assume that both FTk

and FSk
are continuous.

(A3) We restrict our attention to contiguous vertical
sub-sections of a grid-column that contain only liquid
phase condensate and for which each contained layer has
T ≥ 0◦C everywhere. We make this assumption in order
to simplify development of our basic theory, as discussed
in (A4) below. We will include mixed phase and ice clouds
in a future paper.

(A4) Assume that qv nowhere exceeds its satura-
tion value qs = εes(T )/p, and that any excess water is
present as condensed liquid water qc = (qt − qs)H(qt −
qs) = (S − 1)qsH(S − 1), where H is the Heaviside step
function. This so-called “bulk condensate” assumption is
often used in GCMs, since in most warm clouds vapor
supersaturations are very small5. This partially explains
why we have limited this paper to liquid water clouds —
in ice clouds, supersaturations in excess of 10% or 20%
are often seen.

4Previous work (e.g., Tompkins, 2002) has often included sub-gridscale
variability in moisture only, not in temperature. From a study of aircraft
observations of liquid water clouds, Tompkins (2003) finds that the
errors in cloud fraction caused by neglect of sub-gridscale temperature
variability are about half those caused by the neglect of sub-gridscale
moisture variability. Tompkins concludes that for a zero-order treatment
of sub-gridscale variability it may be acceptable to treat moisture
variability alone, but that inclusion of temperature variability should
be a goal in future statistical parameterizations. We therefore include
temperature variability from the outset.
5In reality, cloud condensate is composed of hydrometeors which may
or may not be instantaneously in equilibrium with the surrounding vapor
field. Nevertheless, at least for a typical warm cloud condition, our
calculations with a microphysical droplet growth model indicate such
equilibrium typically occurs within a minute, much shorter than the
typical timestep for GCM phase change routines. The situation for ice-
phase clouds is definitely more complicated, and will be addressed in a
future paper. For the liquid water clouds currently under consideration,
assume that the liquid phase is in equilibrium with the vapor field,
and that curvature and solute effects, which lead to departures of the
saturation vapor pressure from that over a plane pure liquid surface, are
not significant in the bulk, hydrometeor-size-integrated sense.

4 Cloud Fraction and Copulas

4.1 Definition of Clear/Cloud Fraction

Define the clear fraction f ′k of layer k as the areal
fraction of the layer, when viewed from zenith, which
has zero condensate at any level within the layer. This is
technically an areal clear fraction, but under the shallow
layer assumption (A1) it is identical to the so-called
volumetric clear fraction, which is the fractional volume
of the layer with zero condensate. We will therefore drop
the prefix “areal” or “volumetric” and speak only of the
clear fraction f ′k. Using assumptions (A1) . . . (A4), we
may therefore write:

f ′k = Fr(qtk ≤ qsk) = Fr(Sk ≤ 1) = FSk
(1). (3)

The corresponding cloud fraction is just fk ≡ 1− f ′k.
The column clear fraction f ′ is likewise defined as

the areal fraction of the entire gridcolumn, as viewed
from zenith, which has zero condensate at any level. The
determination of f ′ is a major subject of this paper. The
column cloud fraction f is likewise defined by f ≡ 1− f ′.

Why is f ′ an interesting quantity to evaluate and
study? Apart from being mathematically interesting quan-
tity, f ′ has been used extensively in the past in simple
plane parallel radiative transfer schemes as a proxy for
the portion of a GCM gridcolumn unaffected by cloud.
Also, from a satellite data assimilation perspective, f ′ is
related (albeit imperfectly) to the fraction of pixels in a
region that are not “masked” as cloudy, a common product
of many satellite cloud retrievals. In the real world there
are many complicating issues: the existence of sideways
photon transport in broken cloud fields, the occurance of
non-zenith solar and satellite viewing angles, etc. Never-
theless, for a start, we wish to explore the determination
of f ′ under the assumptions discussed above and for the
simple reasons just outlined. It will also turn out, as we
proceed, that our analysis can be used to model complex
inter-variable and inter-layer correlations within a grid-
column, and will therefore have far wider application to
GCM parameterization and data assimilation than our ini-
tial focus on column cloud fraction suggests.

4.2 Formal Evaluation

Let FS , where S ≡ (S1, . . . , SK)T , be the joint cumula-
tive distribution function of saturation ratio for all lay-
ers in the gridcolumn. Specifically, FS(s) = Fr(S1 ≤
s1, . . . , SK ≤ sK), where Fr(A,B) means Fr(A ∩B).
FS has the properties that it is K-increasing6 and that

6“K-increasing” in this context means that VFS
(B) ≥ 0 for

any K-dimensional box B = [a, b] = [a1, b1]× . . .× [aK , bK ] in
[0,∞]K with a ≤ b (i.e., a1 ≤ b1, . . . , aK ≤ bK ), where VFS

(B) ≡
∆

bK
aK

. . .∆b1
a1FS and

∆
bk
ak
FS(s) ≡FS(s1, . . . , sk−1, bk, sk+1, . . . , sK)−

FS(s1, . . . , sk−1, ak, sk+1, . . . , sK).

The joint cumulative distribution FS defined above is K-increasing,
since for it to be otherwise would imply that there existed someB which
contained a negative areal fraction.
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4 NORRIS ET AL.

FS(s) = 0 if at least one coordinate of s is zero and
FS(∞, . . . ,∞) = 1. Then, using the above definitions,

f ′ = FS(1, . . . , 1). (4)

Define the “k-th margin” of FS(s) as the one-
dimensional function obtained from it by setting si =
∞∀ i 6= k. From the definition of FS we see that its k-
th margin is none other than the cumulative distribution
function of layer k alone, i.e., FSk

[see (A2)].
Then, by Sklar’s Theorem (see Nelson, 2006, The-

orem 2.10.9), ∃ a unique “K-copula” CS (to be defined
shortly) such that ∀ s ∈ [0,∞]K ,

FS(s) = CS(FS1(s1), . . . , FSK
(sK)). (5)

Then, by (4) and (3), we may write

f ′ = CS(FS1(1), . . . , FSK
(1)) = CS(f ′1, . . . , f

′
K). (6)

Hence, we see that this K-copula CS , which we shall
investigate shortly, is the special function which converts
the set of layer clear fractions {f ′k} to the gridcolumn clear
fraction f ′.

5 Copulas

What is a copula? From (5), it is a function which
joins a joint cumulative distribution function to its one-
dimensional margins. It describes the scale-free depen-
dence among a set of variables in the sense that it is a
joint cumulative distribution function of the ranks of the
variables within their respective distributions.

The theory of copulas is discussed extensively in a
monograph by Nelson (2006), which includes the follow-
ing formal definition: A K-copula is a function C from
IK to I (where I ≡ [0, 1]) with the following properties:

1. ∀ r = (r1, . . . , rK)T ∈ IK ,
C(r) = 0 if at least one coordinate of r is 0, and
C(r) = rk if all coordinates of r are 1 except rk;

2. ∀ a, b ∈ IK such that a ≤ b, VC([a, b]) ≥ 0,

where the K-box volume function VC and other notation
was defined earlier6.

The following are various results from copula theory
which we will use:

(R1) Two simple copulas with special significance
in copula theory are the “product cop-
ula” ΠK(r) =

∏K
k=1 rk and the “M copula”

MK(r) = min(r1, . . . , rK).
(R2) The

(
K
k

)
“k-margins” of a K-copula C, formed by

setting K − k of the arguments of C to one, are k-
copulas.

6 Special Cases

In our context, item (R2) implies that if only K∗ of the K
layers are cloudy (i.e., have f ′k < 1), then (6) reduces to

f ′ = C∗S(f ′k∗1 , . . . , f
′
k∗

K∗
), (7)

where the k∗ are the cloudy layer indices and the copula
C∗S is the K∗-margin of CS formed by marginalizing
all the clear layers. Marginalizing the clear layers is
equivalent to ignoring them and C∗S is just the copula
of the variability of the cloudy layers only. Hence, we
can retain all our previous results, such as (6), if we (a)
redefine the “gridcolumn” as the subset of cloudy layers
only, (b) redefineK as the number of cloudy layers, which
we relabel k = 1 . . .K, and (c) completely ignore clear
layers. Then FS and CS represent the joint cumulative
distribution function and copula for cloudy layers only,
but f ′ remains the total column clear fraction, since clear
layers have no influence on f ′.

More generally, all our previous results also apply to
any subset of the gridcolumn layers, so long as we redefine
K as the number of such layers, relabeled k = 1 . . .K,
and so long as we regard f ′ as the column clear fraction
associated with that subset of layers only, effectively
treating any layers outside of the subset as non-existent.

6.1 Simple Cases

Two common special cases of (6) are:

1. If all layers are completely independent we will
have f ′ =

∏K
k=1 f

′
k, which corresponds to CS =

ΠK , the “product copula”. This leads to the so-
called “random overlap” cloud fraction

fRAN = 1−
K∏

k=1

f ′k. (8)

Random overlap is unrealistic when applied to
closely separated model layers within a contiguous
cloud layer.

2. If CS = MK , the “M copula”, then we obtain f ′ =
min(f ′1, . . . , f

′
K) and the so-called “maximum over-

lap” cloud fraction

fMAX = 1−min(f ′1, . . . , f
′
K)

= max(f1, . . . , fK).
(9)

Though more realistic than random overlap when
applied within a cloud, we do expect some transi-
tion towards random overlap between distant model
layers within a deep cloud.

Appendix A gives an example to the combination of these
different cloud fraction copulas for the case of multiple
cloud layers.

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–17 (2007)
DOI: 10.1002/qj



REPRESENTING CLOUD FIELDS USING COPULAS 5

7 The Joint Distribution of T and S

So far we have a way of evaluating the layer and column
cloud fractions using (3) and (6) via the statistical prop-
erties of S. But we also need a way characterize the joint
distributions of T and S so that we may estimate more
complex quantities than cloud fraction, such the radiative
or preciptation forming properties of a collection of cloud
layers, which depend on a knowledge of T , qv and qc,
among others. Let FT ,S be the joint distribution function
of T and S. Then by Sklar’s Theorem ∃ a unique 2K-
copula CT ,S such that ∀ t, s ∈ [0,∞]K ,

FT ,S(t, s) = CT ,S(FT1(t1), . . . , FTK
(tK),

FS1(s1), . . . , FSK
(sK)).

(10)

Note that the saturation ratio K-copula CS of (5) is just
the K-margin of CT ,S that marginalizes the temperatures.
Namely,

CS(r1, . . . , rK) = CT ,S(1, . . . , 1, r1, . . . , rK). (11)

8 Multivariate Copulas

There are numerous bivariate copulas discussed in Nelson
(2006). However, in order to model the cloud overlap
properties of multiple layers, we need to find suitable
copulas of higher order. Unfortunately, it is usually not
possible to extend a bivariate copula to higher dimensions
while retaining the flexibility it has in two dimensions.

There are several different approaches to building
copulas of order three and above. One strategy (Chakak
and Koehler, 1995) starts with bivariate marginal copula
and uses conditional probability arguments to iteratively
construct higher order margins that include the lower
order ones but also capture the joint rank dependence of
progressively larger numbers of layers. We have not found
this method easy to use and will not discuss it further.

The approach we will take is to investigate trans-
formations of (T ,S) space that yield known multivariate
distribution functions. These analytic FT ,S then translate
to analytic copulas via Sklar’s Theorem (10).

8.1 Transformed Multinormal Distributions and the
Gaussian Copula

Suppose there exist monotonic increasing transformations

ZTk = GTk(Tk)
ZSk = GSk(Sk)

}
, k ∈ {1, 2, . . . ,K}, (12)

such that Z ≡ (ZT1, ..., ZTK , ZS1, . . . , ZSK)T ∈ R2K

has a multivariate Normal (i.e., multinormal) distribution
with zero mean (E(Z) = 0) and covariance C = E[ZZT ],
or using common statistical shorthand, Z ∼ N2K(0,C),
and that C has unit variances (ones on its diagonal) and is

therefore a correlation matrix7. The implication of these
transformations is that the density of areal fraction in Z
space is

pZ(z;C) = (2π)−K |C|−1/2 exp{−zT C−1z/2}. (13)

Using the monotonic increasing property of the Gk,

FT ,S(t, s)
= Fr(T1 ≤ t1, . . . , TK ≤ tK ,

S1 ≤ s1, . . . , SK ≤ sK)
= Fr(ZT1 ≤ GT1(t1), . . . , ZTK ≤ GTK(tK),

ZS1 ≤ GS1(s1), . . . , ZSK ≤ GSK(sK))
= FZ(GT1(t1), . . . , GTK(tK),

GS1(s1), . . . , GSK(sK);C),

(14)

where

FZ(z1, . . . , z2K ;C) =
∫ z1

−∞
. . .

∫ z2K

−∞
pZ(z′;C)dz′. (15)

There is no closed form for the multinormal distribution
FZ , so it must be evaluated numerically. Such methods
exist, for example, Genz (1992) and a related MATLAB
implementation by Alex Strashny (http://alex.strashny.-
org/b/mvncdf.m).

That there exist these transformations Gk yielding
Z ∼ N2K(0,C) is an assumption. If this assumption is not
valid we shall be essentially fitting (T ,S) with a trans-
formed multinormal, and seeking those parameters which
give the best fit. Anyway, assuming Z ∼ N2K(0,C), it is
a property of the multinormal that each of the 2K margins
is normally distributed as Zk ∼ N(0,Ckk) = N(0, 1), i.e.,
each Zk is a standard normal variate.

Since ZTk and ZSk are ∼ N(0, 1),

FZT k
(z) = FZSk

(z) =
1
2

[
1 + erf

(
z√
2

)]
≡ Φ(z),

(16)

which is the standard Normal cumulative distribution
function. Its inverse is

Φ−1(p) =
√

2 erf−1(2p− 1). (17)

Since GTk is monotonic increasing,

FTk
(t) = Fr(Tk ≤ t) = Fr(ZTk ≤ GTk(t))

= FZT k
(GTk(t)) = Φ(GTk(t)),

and similarly for GSk, so that

GTk(t) = Φ−1(FTk
(t)) and

GSk(s) = Φ−1(FSk
(s)).

(18)

7For the existence of such transformations we actually require only
that there exist monotonic increasing transformations such that Z has
an arbitrary multinormal distribution, i.e., Z ∼ N2K(µ,Σ), except
only that Σ has all non-zero variances σ2

k ≡ Σkk > 0, since then
the further monotonic increasing transformations (Zk − µk)/σk 7→
Zk , yield Z ∼ N2K(0,C), where C is the correlation matrix Cij ≡
Σij/(σiσj).
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6 NORRIS ET AL.

Combining these with (14), we have

FT ,S(t, s) = CZ(FT1(t1), . . . , FTK
(tK),

FS1(s1), . . . , FSK
(sK);C),

(19)

as in (10), with

CZ(r1, . . . , r2K ;C) =

FZ(Φ−1(r1), . . . ,Φ−1(r2K);C),
(20)

∀rk ∈ [0, 1]. This CZ is the so-called “Gaussian copula”
(e.g., Cherubini et al., 2004) and can be used in place of
CT ,S . Once the K(2K − 1) unique elements of the corre-
lation matrix C are specified, we can evaluate the column
clear fraction f ′ using (11) and (6). Or if we know the
form of the 2K single layer margins FTk

and FSk
, we

can evaluate the full joint distribution FT ,S using (19). In
either case, the result will only be as good a our assump-
tion that the (T ,S) field is a transformed multinormal. If
it is not, we can adjust C and the parameters of the FTk

and FSk
distributions to give the best fit to the observed

cloud fraction or (T ,S) data.

9 Inference of Copula Parameters

Say we are supplied with N random samples
{T (1), . . . ,T (N)} and {S(1), . . . ,S(N)} from a grid-
column and wish to model the scale-free dependence
between layers using copulas. We will assume here that
the marginal distributions FTk

and FSk
are known exactly

or have been estimated in a prior step. Then the sample
ranks are given by

R
(n)
k =

{
FTk

(T (n)
k ), for k = 1, . . . ,K, and

FSk
(S(n)

k ), for k = K + 1, . . . , 2K.
(21)

Also, suppose we have a candidate analytic copula,
C(r1, . . . , r2K ;α), with parameters α, that we wish to use
to model the interdependence between the layer ranks. We
now desire a method of estimating some ”best fit” value of
α, call it α̂, from the supplied R(n)

k .
One approach is to seek a maximum likelihood esti-

mate (MLE) of α. Our preliminary investigations of this
problem, for the simple case of the Gaussian copula, have
not been at all trivial. Furthermore, it is well known that
maximum likelihood estimates are not necessarily unbi-
ased estimates, namely that the expected values of the esti-
mated parameters are not necessarily equal to the parame-
ters of the population from which the samples were drawn.
It is important to have unbiased parameter estimates so
that further generation of samples from the copula (see
§11) will be as consistent with the underlying population
as possible. For these reasons, we seek an unbiased esti-
mate of α.

We will limit our investigation to the simple case
of the Gaussian copula, so we seek an unbiased esti-
mate Ĉ of the correlation matrix of the distribution

Z ≡ (Φ−1(R1), . . . ,Φ−1(R2K))T ∼ N2K(0,C) underly-
ing the Gaussian copula. It is well known that an unbi-
ased estimate of C is provided by the “sample covariance
matrix”

Σ∗ij ≡
N∑

n=1

(Z(n)
i − Z̄i)(Z

(n)
j − Z̄j)/(N − 1), (22)

where

Z̄k ≡
N∑

n=1

Z
(n)
k /N. (23)

Finally, to enforce Ĉ as being a correlation matrix, we use

Ĉij ≡
Σ∗ij√

Σ∗ii
√

Σ∗jj

. (24)

10 Estimation of grid-column averages

Let ψ be some scalar gridcolumn quantity that is ulti-
mately definable in terms of gridcolumn temperature T
and saturation ratio S and which therefore has a horizontal
distribution within the grid-column. We define the gridcol-
umn mean (expectation value) of ψ as

〈ψ〉 ≡
∫ ∞

0

· · ·
∫ ∞

0

ψ(t, s) pT ,S(t, s) dt ds. (25)

where pT ,S is the density of areal fraction within (T ,S)
phase space, defined such that

FT ,S(t, s) =
∫ s1

0

· · ·
∫ sK

0

∫ t1

0

· · ·
∫ tK

0

pT ,S(t, s) dt ds,

for all t, s ∈ [0,∞]K . Note that this mean is a linear
operator, namely 〈aψ〉 = a〈ψ〉, and 〈ψ + φ〉 = 〈ψ〉+ 〈φ〉.
Also, if ψ is only a function of a single layer Tk and Sk

then the other layers are marginalized and we find

〈ψ(Tk, Sk)〉 =
∫ ∞

0

∫ ∞

0

ψ(t, s) pTk,Sk
(t, s) dt ds, (26)

where pTk,Sk
(t, s) = ∂2FTk,Sk

(t, s)/∂t ∂s.
For some ψ, such as the total or condensed water

paths, the layer contributions appear linearly and so the
〈·〉 passes through to individual layer evaluations in 〈ψ〉.
This means that 〈ψ〉 can be evaluated as a weighted sum
of single-layer marginal means as in (26). But for many
other quantities, such as radiative transfer integrals, or
surface precipitation flux, the ψ is a non-linear function of
the layer contributions, and so 〈ψ〉 cannot be evaluated in
terms of layer means, 〈·〉k. We will consider the numerical
evaluation of such 〈ψ〉 in §11.

Finally, note that the expectation value 〈ψ〉 is invari-
ant under any arbitrary transformation of (T ,S). In partic-
ular, for any one-to-one transformation to space X ⊂ R2K

we may re-write (25) as

〈ψ〉 =
∫

X

ψ(x) pX(x) dx. (27)

We may choose any transformation that is convenient for
the evaluation of 〈ψ〉.
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REPRESENTING CLOUD FIELDS USING COPULAS 7

11 Monte Carlo Subcolumn Generation

There are many quantities, such as the shortwave cloud
transmittance, for which the integral in (25) or (27) does
not have a simple analytic form and therefore requires
evaluation by numerical methods. One such method
involves the Monte Carlo generation of a finite number of
“subcolumns” from the gridcolumn and then approxima-
tion of 〈·〉 as the mean over this population of subcolumns.
By a “subcolumn” we mean a description of all K lay-
ers at one particular horizontal location in the gridcolumn,
as specified by a 2K-vector (T ,S) or X . The Monte
Carlo subcolumn generator must produce a set of such
subcolumns in a manner consistent with the underlying
areal distribution function FT ,S (or FX ) of the gridcol-
umn. While there exist other numerical methods that are
more accurate, we will focus on Monte Carlo methods
here because of the recent interest in Monte Carlo radia-
tive transfer parameterizations for GCMs (e.g., Räisänen
and Barker, 2004; Räisänen et al., 2005).

11.1 A Gaussian Copula Subcolumn Generator

For the Gaussian copula, we may choose the monotonic
increasing transformations Z in (12) so that

〈ψ〉 =
∫

R2K

ψ(z) pZ(z;C) dz, (28)

where pZ(z;C) is defined by (13).
This suggests the following Monte Carlo method to

estimate 〈ψ〉: (1) select NS random sample vectors Z ∈
R2K from the distribution N2K(0,C), i.e., from a popula-
tion with probability density pZ(z;C), using Appendix B;
(2) form a rank vector R for each Z using Rk = Φ(Zk);
(3) form a T and S for each R using the inverse
of the marginal distributions, Tk = F−1

Tk
(Rk) and Sk =

F−1
Sk

(Rk+K), k = 1, . . . ,K; (4) form a qc for each T and
S using qck = (Sk − 1)qs(Tk)H(Sk − 1) and any other
intermediate quantities needed to evaluate a ψ for each
sample; (5) finally, 〈ψ〉GCOP

NS
is the mean of the NS such ψ.

11.2 A Generalized Copula Subcolumn Generator

For any copula in general, one particular monotonic
increasing transformation of (T ,S) is to rank space,
namely,

(t, s) 7→ r ≡ (FT1(t1), . . . , FTK
(tK),

FS1(s1), . . . , FSK
(sK))T .

(29)

Evaluating 〈ψ〉 in this space,

〈ψ〉 =
∫

I2K

ψ(r)
∂2KCT ,S(r)
∂r1 . . . ∂r2K

dr, (30)

since the copula CT ,S is the areal distribution function
in rank space. We may therefore use the following gen-
eral Monte Carlo method to estimate 〈ψ〉: (a) select NS

random sample vectors R ∈ I2K from the copula CT ,S ,

i.e., from a population with probability density function
∂2KCT ,S(r)/(∂r1 . . . ∂r2K); (b) apply steps (3) and (4)
from §11.1; (c) then 〈ψ〉NS

is the mean of the NS such ψ.
The essense of this method is to generate random

vectors in I2K that are distributed according to a specified
copula. Let us consider two particular cases of interest:

11.2.1 A “random overlap” copula

Based on the comments in §6.1, we model “random cloud
overlap” using K independent layers and the product
copula, CS = ΠK . To represent K independent layers,
cloudy or not, while still retaining T and S correlations
within each layer, we can use the copula

CRAN
T ,S (r) = ΠK

k=1CTk,Sk
(rk, rk+K), (31)

where CTk,Sk
is the marginal copula of layer k alone and

r is the rank vector defined by (29). Note that, by (11)
and the definition of a copula in §5, CRAN

S (v1, . . . , vK) =
ΠK

k=1CTk,Sk
(1, vk) = ΠK

k=1vk, as expected.
The intra-layer copula CTk,Sk

can be a Gaussian
copula or any other bivariate copula that is found
to give a meaningful description of the rank depen-
dence between T and S within the layer. We assume
that we have a method of generating random tem-
perature and saturation ratio rank pairs (Rk, Rk+K)
from this copula. Such methods are described in Nel-
son (2006) and Appendix B of Sancetta (2005) and
are also available as subroutines within MATLAB for
example. For example, if we take CTk,Sk

(u, v) as the
Gaussian copula FZ∈R2(Φ−1(u),Φ−1(v);Ck), where Ck

is the correlation matrix for (ZTk, ZSk) and FZ∈R2 is
the two-dimensional (K = 1) version of (15), then per
§11.1 and our Appendix B, we may use (Rk, Rk+K) =
(Φ(G1),Φ(ρkG1 +

√
1− ρ2

kG2)), where ρk is the corre-
lation coefficient of ZTk and ZSk, i.e., the off-diagonal
element of Ck, and where G1, G2 are independently dis-
tributed ∼ N(0, 1). Finally, the independence between
layers is achieved in the Monte Carlo process by doing
this single layer generation independently for each layer.

11.2.2 A “maximum overlap” copula

The generation of maximum overlap is not trivial for
the case where the intra-layer correlation of T and S is
to be preserved. We present a method in Appendix C
for generation of maximally overlapped saturation S and
therefore maximally overlapped clouds for the case in
which each intra-layer copula is Gaussian.

12 Some Preliminary Tests

This paper is mainly intended as a theoretical outline of
our new approach to dealing with cloud overlap. We will
show here only some preliminary numerical results using
synthetic data from a cloud resolving model simulation
and present a more extensive testing in a follow-up paper.
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12.1 Goddard Cumulus Ensemble Model

We use output from a Goddard Cumulus Ensemble
(GCE) model simulation of the Atmospheric Radiation
Measurement (ARM) Spring 2000 Intensive Operation
Period (IOP) over the Southern Great Plains (SGP)
site. The simulation has 128× 128 gridpoints per layer
with a 1km grid spacing, and 41 levels in the vertical,
spread non-uniformly from the surface through 22km. The
GCE model is non-hydrostatic with a bulk microphysics
scheme including three species of ice: crystals, snow and
graupel. Details of the model and an analysis of this par-
ticular simulation can be found in Zeng et al. (2007).

12.2 A preliminary 12-layer test

We consider the overlap of the GCE model’s lowest twelve
layers from a single snaphot of the GCE simulation out-
put at 1831Z on 16 March 2000, about 15 days into a
20 day simulation, and about one day after the passage
of a cold front through the domain. The lowest 12 lay-
ers are precisely the ones that contain no gridpoints with
T < 0◦C and no cloud ice in this snapshot. Each of these
layers contains 128× 128 gridpoints, and the twelve lay-
ers together form a simplified “grid-column” for the cloud
fraction tests to follow. The mean profile of temperature
for these layers, which extend from the surface to about
2km, is shown in Figure 1a.

For each gridbox in our simplified gridcolumn, we
form a total water content qt by summing the model
vapor and condensed (but non-precipitating) cloud water
contents. The mean profile of qt is shown in Figure 1b and
together with the temperature profile shows a relatively
warmer, moister airmass overlying a poorly mixed surface
layer up to 800m. The upper airmass is the air that
has been lifted by the passing coldfront, and the lower
layer is the colder, drier air that swept under it. The
bulk condensed water content, qc and saturation ratio,
S, are then calculated according to assumption (A4), §3.
Figure 1c shows the presence of some condensed water in
each of the twelve layers.

Figure 2 shows horizontal slices of T and qc for the
GCE snapshot for three selected layers: 3, 5, and 12, with
mid-layer heights at 214, 470, and 2122 meters above
the surface. Layer 3 has a complex structure containing
narrow, string like perturbations with high T and qc
(shown) and also high qt and strong upward motion (not
shown). These are cumulus cloud bands associated with
surface-driven warm, moist convective updrafts. These
form readily in the lower region because the surface
has been recently wet by frontal rain and the latent
heat flux is high. Layer 12, conversely, is representative
of the warmer, moister, frontally raised airmass and is
characterized by a much more slowly varying, large scale
cloud field surrounding a distinct clear region. Finally,
layer 5, is in the transition between these two airmasses
and shows elements of both.

We will estimate a Gaussian copula using the T
and S data from this twelve layer snapshot, as described
below, and then see how our copula-based cloud fraction

and column radiative properties compare with the exact
snapshot properties and with the properties predicted by
other methods applied to this synthetic grid-column.

12.2.1 Cloud Fraction

We define the “true” cloud fraction for each layer f true
k

as the fraction of gridboxes per layer which have S > 1.
These are shown as the solid line in Figure 1d. Notice
again that there is cloud in every layer, even though
we have inferred from the the temperature and moisture
profiles above that we are likely looking at two different
air masses. This observation gives further reason why a
“maximum overlap” assumption should not automatically
be applied to a vertically contiguous set of cloudy layers.

The true column cloud fraction f true is 0.9321. This is
the fraction of the 128× 128 horizontal points for which
at least one layer has some condensate. By comparison,
the column cloud fractions formed by the random overlap
and maximum overlap assumptions, using the f true

k as
input, are 1.0000 and 0.7157, respectively. We will call
these f (true)

RAN and f (true)
MAX. They are in error by 7.3% and

−23.2% respectively (see also Table I). Again, while
neither random or maximum overlap is realistic, in this
case maximum overlap is very unrealistic, even though the
whole layer is “contiguously cloudy” in the vertical.

Next we fit an appropriate marginal distribution func-
tion to each layer’s T and S data. Various distributions
were tried, but the Generalized Extreme Value8 (GEV)
Distribution proved to give the best fits. The maximum
likelihood fits are shown in the top panels of Figures 3
and 4 for the same three selected layers shown in Figure 2.
The layer 3 and 5 fits are generally very good, although the
narrow localized peak at S = 1 is not captured for layer 3.
The layer 12 fits are poorer — it seems that although the
GEV distribution is generally reasonable, it cannot model
a broad distribution with an additional sharp peak. Future
work should be done to select an improved marginal dis-
tribution, possibly one that is the sum of two distributions,
one to handle the main spread, and another to model an
additional peak. Finally, note how both positively and neg-
atively skewed marginal distributions are needed for Tk

and Sk. The marginals are clearly non-Gaussian.
From the GEV best fit margins, which we denote

by FGEV
Tk

and FGEV
Sk

, we evaluate the “fitted” layer cloud
fractions as follows: ffit

k = 1− FGEV
Sk

(1) using (3). These
ffit

k values are shown as the dashed line in Figure 1d. In the

8The Generalized Extreme Value distribution is defined by

FX(x;µ, σ, ξ) = exp

{
−

[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

for 1 + ξ(x− µ)/σ > 0, where µ ∈ R is the location parameter, σ > 0
is the scale parameter and ξ ∈ R is the shape parameter. It can handle
both positively and negatively skewed distributions as Figures 3 and 4
show. For ξ > 0, the distribution is bounded below, and has an infinite
tail in the positive x direction. Conversely for ξ < 0, the distribution
is bounded above, and has an infinite tail in the negative x direction.
However, for the distributions of positive qt we are studying, there will,
in practice, be negligible probability for qt < 0.

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–17 (2007)
DOI: 10.1002/qj



REPRESENTING CLOUD FIELDS USING COPULAS 9

0 5 10
0

500

1000

1500

2000

T [C]

z 
[m

]

5 6 7
0

500

1000

1500

2000

q
t
 [g/kg]

0 0.05 0.1
0

500

1000

1500

2000

q
c
 [g/kg]

0 0.5 1
0

500

1000

1500

2000

f

Figure 1. (a)-(c) Layer mean profiles for the lowest twelve layers of the GCE snapshot (see text) of temperature, T , total water content, qt,
and condensed water content, qc; (d) The f true

k (solid) and ffit
k (dashed) layer cloud fractions (see text).

Figure 2. Horizontal slices of the GCE snapshot at layers 3, 5 and 12, for temperature (top) and condensed water content (bottom).

upper airmass, especially, these ffit
k tend to underestimate

f true
k by 10–15%. For layer 12 shown in Figure 4 we can

see that this underestimate stems from failing to capture
the sharp peak in S just above S = 1. The random and
maximum overlap column fractions calculated using the
ffit

k are as follows: f (fit)
RAN = 0.9999 and f (fit)

MAX = 0.6963,
which are in error by 7.3% and −25.3% of f true.

Next, sample ranks are assigned using (21) with the
GEV marginal distributions just described, and these are
then transformed to Zk space using (12) and (18). The
binned PDFs of the ZTk and ZSk are shown in the lower
panels of Figures 3 and 4. As expected, the distributions
of the Zk are close to N(0, 1), at least for layers 3
and 5. Then, as per §9, we approximate the correlation
matrix Ĉ from the Z(n)

k using (24) and (22). At this point
the Gaussian copula (20) is fully specified, and we can
evaluate the column cloud fraction via (6). This evaluation

can use either the f true
k or ffit

k , yielding the following two
Gaussian copula estimates of the column cloud fraction:
f (true)

GCOP = 0.9096 and f (fit)
GCOP = 0.8835. These are in error

by −2.4% and −5.2% of f true. These errors are less
than the respective errors associated with the random or
maximum overlap column cloud fractions (see Table I)
and demonstrate, at least for this simple test case, the
utility of the Gaussian copula cloud fraction method.

Since both f (true)
GCOP and f (fit)

GCOP depend on the GEV fits,
via the assignment of the sample ranks used to calculate
the Zk, it seems likely that an improved marginal model
(such as the sum of two distributions, as suggested ear-
lier) would further improve the Gaussian copula results.
Finally, note that we could have alternatively assigned
empirical ranks to the Tk and Sk data, without fitting any
model distribution, just by using the position of gridpoint
values within a sorted list for each layer. We decided to
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Figure 3. Top: the binned frequency distribution of Tk data for layers 3, 5 and 12 expressed in probability density units (shaded gray)
and the probability density function (solid line) corresponding to the maximum likelihood fit of the Generalized Extreme Value (GEV)
Distribution to the Tk data. Bottom: the corresponding frequency distributions of Z transformed from Tk using (12) and (18) in gray,
and the probability density of a maximum likelihood fit of a normal distribution as the solid line. The standard normal probability density
function N(0, 1) is plotted as a dashed line for comparison, but it is only distinguishable from the maximum likelihood fit in layer 12, and

then only slightly.
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Figure 4. As for Figure 3 but for the distributions of saturation ratio, Sk. Left to right are layers 3, 5 and 12.
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Table I. Column cloud fractions (and their % bias with respect to
the GCE reference f true = 0.9321) for methods χ = GCOP, MAX
and RAN. The f (true)

χ row uses the actual GCE layer cloud fractions,
f true

k , while the f (fit)
χ row uses the FGEV

Sk
-derived layer fractions, ffit

k .

GCOP MAX RAN

f (true)
χ 0.9096 (-2.4%) 0.7157 (-23.2%) 1.0000 (7.3%)
f (fit)

χ 0.8835 (-5.2%) 0.6963 (-25.3%) 0.9999 (7.3%)

use the marginal fitting approach instead, since our ulti-
mate plan is to use the new copula method in tandem
with PDF-based cloud parameterizations within GCMs, in
which case a parameterized marginal distribution function
is needed.

12.2.2 Radiative Transfer

Though we first conceived the use of copulas as a means
of approximating column cloud fraction, we have shown
in §10 and §11 that copula methods can also be used
to generate ensembles of “subcolumns,” consistent with
an underlying distribution, over which gridcolumn means
of non-linear radiative properties may be approximately
evaluated.

Consider some radiative quantity, ψ, for which we
want to estimate the gridcolumn average 〈ψ〉. Our ref-
erence calculation 〈ψ〉GCE

ICA is the Independent Column
Approximation (ICA) calculation in which ψ is evaluated
for each of the 128× 128 or 16384 subcolumns compris-
ing the GCE snapshot and the results averaged. Next, to
study the effect of subsampling these GCE subcolumns,
we evaluate 〈ψ〉GCE

NS
, the average of ψ over NS randomly

selected subcolumns from the GCE snapshot, with Ns =
2n, n = 1, . . . , 10. For each such NS we do 1000 indepen-
dent evaluations of 〈ψ〉GCE

NS
to characterize the spread in

〈ψ〉GCE
NS

arising from the stochastic nature of the random
subcolumn selection (see below).

We also evaluate an “eXact Overlap Randomized”
result, 〈ψ〉XOR

NS
, in the same way as we evaluate 〈ψ〉GCE

NS
,

using an exact copy of the 16384 GCE subcolumns, except
that, layer by layer, we randomly rearrange the positions
of cloudy gridpoints, while leaving the clear gridpoints
untouched. This preserves exactly the geometrical cloud
overlap found in the GCE subcolumns, and also preserves
the joint distribution of T and S within each layer, but
destroys the vertical correlations of in-cloud properties
between layers9. The XOR method can thus been seen
as a way of isolating the effects of geometrical cloud
overlap from the effects of vertical correlation of in-cloud
properties such as T and qc.

9The XOR method is similar to another method, which we call “eXact
Overlap Homogenized” or XOH, in which the GCE subcolumns are
kept unchanged, except for homogenizing the qc values in the cloudy
gridpoints of each layer. We find that the biases of the XOH results are
similar to, but slightly larger (in an absolute sense) than the biases for
XOR, for each of the ψ we later consider. Thus we will not include the
XOH results in our following analysis.

Finally, we also generate three copula results,
〈ψ〉GCOP

NS
, 〈ψ〉RAN

NS
, and 〈ψ〉MAX

NS
, using the Gaussian, ran-

dom, and maximum copula generators described in §11.1,
§11.2.1, and §11.2.2. The Gaussian copula generator
(GCOP) uses the 24× 24 sample correlation matrix Ĉ of
the 16384 Z(n) ∈ R24 as per §9. In contrast, the random
and maximum copula generators use a separate Gaus-
sian copula for each of the 12 layers, characterized by
Ĉk, the 2× 2 sample correlation matrix of the 16384
(Z(n)

Tk , Z
(n)
Sk ) ∈ R2.

In order to preserve an identical sampling stategy
among all the 〈ψ〉NS

variants, we generate a pool of
exactly 16384 subcolumns from each of the three copula
generators, and then select 1000 lots of NS subcolumns
from this pool, for each NS , i.e., the same sampling strat-
egy as for 〈ψ〉GCE

NS
and 〈ψ〉XOR

NS
. We note that for NS =

1024, for example, we will be selecting 1000 lots of 1024
random subcolumns each, from a total of only 16384 avail-
able subcolumns, so the spread of 〈ψ〉NS

for high NS val-
ues will be artificially reduced by multiple reselection of
the same subcolumns. We are not particularly concerned
about this, first because the spread will already be small
for large NS , but more importantly, because this reduction
in spread applies equally to each type of 〈ψ〉NS

. We are
concerned primarily with the relative biases of the differ-
ent methods, not in a precise evaluation of the spread in
〈ψ〉NS

at high NS .
The preceeding paragraphs define the sampled grid-

column means 〈ψ〉χNS
for χ = GCE, GCOP, XOR, MAX,

and RAN, as well as the reference 〈ψ〉GCE
ICA mean over all

16384 subcolumns of the GCE snapshot. We also define
the additional ICA means 〈ψ〉χICA, for χ = GCOP, XOR,
MAX, and RAN, as the mean ψ over all 16384 sub-
columns produced for method χ. Also, in all that follows,
when we refer to the percentage bias or just “bias” in
〈ψ〉χNS

or 〈ψ〉χICA we mean its percentage error with respect
to the 〈ψ〉GCE

ICA reference.
We will study the shortwave (SW) transmittance,

TRN , and reflectance, RFL, [i.e., the downwelling SW
flux at the surface and the upwelling SW flux at the
top of the atmosphere (TOA), both normalized by the
downwelling SW flux at the TOA] and the downwelling
longwave (LW) flux at the surface, DLR, and outgoing
LW flux at TOA, OLR, as evaluated by the SW (Chou
et al., 1998; Chou and Suarez, 1999) and LW (Chou et al.,
2001) column radiation models used in various NASA-
GSFC Large Scale models10. The surface was assumed
black for both SW and LW calculations (i.e, zero surface
albedo and unit emissivity across the spectrum) with a
temperature of 281.73 K from the GCE. The temperature
and water vapor profile used above the lowest 12 layers
comes from the mean GCE fields up to a pressure of 37
mb (the top of the GCE domain) and from a standard
mid-latitude summer (MLS) profile above that level. The
profile of ozone molecular concentrations also comes

10Clearly the overlap assumptions of these column radiation codes are
turned off, since they are being applied iteratively to single subcolumns
for which each layer is either overcast or clear.
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Table II. Percentage biases in gridcolumn means 〈ψ〉χICA for χ =
GCOP, XOR, MAX, and RAN, with respect to reference 〈ψ〉GCE

ICA .

ψ 〈ψ〉GCE
ICA GCOP XOR MAX RAN

TRN 0.4768 0.15 -10.83 8.44 -22.09
RFL 0.3158 -0.14 14.13 -10.85 28.74
DLR 334.36 W/m2 -0.22 1.47 -3.18 4.10
OLR 236.68 W/m2 0.17 -0.18 0.45 -0.49

from the same MLS profile, while the CO2 concentration
was set to 370 ppm throughout the domain. The solar
code used an overhead sun. An effective radius for cloud
droplets of 10 microns was assumed.

Table II shows the 〈ψ〉GCE
ICA reference means for our

12-layer test case, together with the corresponding biases
in the other ICA means (〈ψ〉χICA for χ = GCOP, XOR,
MAX, and RAN). For the SW quantities TRN and
DLR, the GCOP biases are much smaller than for the
other methods and strongly support the utility of the
GCOP method, which nicely models the effects of both
geometrical cloud overlap and vertical correlation of in-
cloud properties.

The signs of the the other SW biases can be explained
as follows: (XOR) Note that randomizing each layer’s
cloudy gridpoints does not homogenize the cloud on a
layer by layer basis, since we ignore all non-plane-parallel
effects in our radiative transfer calculations, but it does
tend to homogenize vertically integrated cloud properties,
such as the condensed water path, in regions where mul-
tiple GCE cloud layers contribute. This explains the signs
of the SW biases for XOR, which are consistent with the
so-called “plane parallel bias” in which homogenizing the
condensed water path in a cloud makes it less transmis-
sive and more reflective in the SW, due to the non-linear
dependence of cloud albedo on optical depth; (MAX)
Maximum cloud overlap produces the maximum column
clear fraction and therefore promotes transmittance over
reflectance. Furthermore, the maximum generator we have
employed produces highly inhomogeneous cloud water
paths, in the sense that saturation ratio is maximally rank
correlated in the vertical. This produces the opposite of the
plane-parallel bias just described, yielding larger cloudy
transmittance and smaller reflectance; (RAN) Random
overlap underestimates column clear fraction and there-
fore transmittance. It also has a homogenizing effect on
the condensed water path, as described under XOR, and
therefore also underestimates transmittance due to the
plane-parallel bias previously described.

The following conclusions (for this test case) can
be drawn from the sizes of the SW biases: (1) It is
very important to consider the vertical correlation of in-
cloud quantities, not just the correct geometrical cloud
overlap, since even with exact overlap, the XOR SW
biases exceed 10%. Compare this with the very small
biases for GCOP — evidently the correct modeling of
inter-layer correlations of in-cloud properties by GCOP,
which XOR destroys, more than compensates for its
non-exact column cloud fraction. (2) The accuracy of

prediction of the column cloud fraction is a poor indicator
of the quality of the solar transmittance and reflectance.
First, as above, a perfect column cloud fraction in XOR
still yields in excess of 10% biases in TRN and RFL.
Second, as per Table I, the RAN cloud fraction only has
a 7% error but SW biases in excess of 20% while the
MAX cloud fraction is in error by more than 20% but has
significantly smaller SW biases, about one third those of
RAN. Judging from the cloud fraction alone it appears
that RAN is better than MAX, but the exact reverse is
true for TRN and RFL. This value judgment about f
comes as no surprise really: there is broad awareness in the
GCM parameterization community that the cloud fraction
is a rather imprecise quantity, especially as it relates to
radiative transfer — a thin cloud may have negligible
radiative effect even though being technically classified as
cloud.

Next consider the LW biases for DLR and OLR.
Again, GCOP gives the smallest biases, but the results are
not nearly as definitive as for SW, and especially forOLR,
which is never in error by more that 0.5%. The analysis of
the LW biases is complicated (c.f. SW) by the importance
of temperature variability, but we make the following
observations: (1) The exact cloud fraction (XOR) biases
are smaller than for MAX and RAN, indicating that the
accuracy of the cloud fraction f is more important in the
LW than in the SW. This is consistent with the fact that
clouds become black in the LW faster than they become
saturated in SW reflectance, and so thinner clouds, which
contribute as much to f as thicker clouds, become more
important; (2) The larger biases for DLR compared to
OLR can be explained by the greater contrast between
the brightness temperatures of the clouds and the clear
sky than between the clouds and the surface; (3) The
signs of the XOR, MAX, and RAN biases are consistent
with the LW version of the “plane-parallel bias”, namely
that the homogenization of cloud water path causes an
increase in emissivity, due to the non-linear dependence
of emissivity on cloud water path. Thus the XOR and
RAN methods, which tend to homogenize cloud water
path, act to blacken the clouds and therefore cause them
to radiate at an effective emitting height closer to the
boundary of the cloud. For DLR this causes the LW
radiation to come from closer to the cloud base, which
is a warmer region due to the temperature lapse rate
(see Figure 1a). Conversely, homogenization produces an
effective emitting height closer to the top of the cloud
for OLR, which is generally a cooler region. This is
consistent with the signs of the LW biases for XOR and
RAN in Table II. The signs of the MAX biases are just
the opposite, since the MAX method tends to increase
cloud inhomogeneity, as described above for SW. (4) The
signs of the LW biases for MAX and RAN are also
consistent with a simple column cloud fraction effect:
RAN overestimates column cloud fraction and thereby
shields the cold sky for DLR and warm surface for
OLR, thus contributing to positive and negative biases
in DLR and OLR, respectively. The opposite is true
for MAX which underestimates column cloud fraction.
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Clearly, both the cloud fraction and cloud homogenization
biases are in operation together for MAX and RAN, while
the XOR method retains only the homogenization bias.
Finally, note that these LW biases are consistent with the
results presented by Li and Barker (2002).

We have noted that although GCOP is still the best
performer in the LW, its relative improvement over MAX,
RAN or XOR is less than for the SW. We believe that this
is in part due to the importance of temperature variability
in the LW, and the fact that the fitting of the marginal
temperature distributions could be improved, especially
for the upper cloud in this test case (e.g., Figure 3, top
right panel). It is our hope that the LW GCOP results will
further improve with an improved marginal model, such
as the two-component marginal proposed in §12.2.1.

Figures 5 and 6 summarize the biases of sampled
means 〈ψ〉χNS

(χ = GCE, GCOP, XOR, MAX, and RAN)
with respect to the reference 〈ψ〉GCE

ICA values. The vertical
lines show the observed spread of 〈ψ〉χNS

bias over the
1000 iterations in the 25%–75% and 2.5%–97.5% per-
centile ranges. The horizontal lines show the biases in the
〈ψ〉χICA, as per Table II. We make the following observa-
tions: (1) The statistical spread in each 〈ψ〉χNS

decreases
as the number of subcolumn samples is increased; (2)
The middle half (inter-quartile range) of the spread of
the 〈ψ〉GCOP

NS
has an absolute error smaller than the bias

for 〈ψ〉XOR
ICA for NS ≥ 16 for TRN , RFL, and DLR. This

means that the majority of sampled 〈ψ〉GCOP
NS

estimates will
beat the XOR ICA calculation for as few as 16 sampled
subcolumns. The OLR biases are already very small and
can be estimated to within about 1% by any method the
majority of the time for NS ≥ 16.

13 Conclusions and Potential Applications

We have shown that a general representation of GCM
column cloud fraction within the PDF-based statistical
cloud parameterization context can be obtained by the use
of statistical functions called “copulas” that encapsulate
the dependence structure of rank statistics in a multivariate
system. Using this theory and cloud resolving model
(CRM) simulations for guidance, a new formulation of
GCM cloud overlap has been obtained.

We find that Gaussian copula estimates of col-
umn cloud fraction for a 12-layer test case using syn-
thetic data from a Goddard Cumulus Ensemble simula-
tion are an improvement over both random and maximum
overlap estimates. Furthermore, Gaussian copula Monte-
Carlo estimates of the non-linear SW transmittance and
reflectance and the LW surface downwelling and TOA
outgoing radiation showed very significant improvement
over the maximum or random generators for this test case.
The Gaussian copula generator method also outperforms
the exact overlap randomized (XOR) method described in
the text. In fact, for a majority of the Monte-Carlo results,
the absolute bias calculated over as few as 16 randomly
selected subcolumns from the Gaussian copula generator,
is less than the bias for an infinite number of XOR sub-
columns. These results suggest significant potential for the

copula-based parameterization of cloud overlap in future
GCM cloud radiation parameterizations. In a follow-up
paper, we will present a more extensive testing of the
method using GCE simulations for a range of synoptic
conditions.

This paper has concentrated on the general theory
of the application of copulas to the description of the
horizontal and vertical distribution of temperature and
water content within a GCM-like gridcolumn. We provide
this theoretical basis in the hope that it will be used
to develop a new set of GCM cloud parameterizations.
Our initial thoughts on how this might be done are as
follows: (1) Our starting point is that a good GCM
parameterization should be governed by a reasonably
small number of parameters which are prognosticated or
diagnosed. The method described in this paper requires
a small set of marginal distribution parameters for FTk

and FSk
for each of the K model layers, and a 2K ×

2K correlation matrix describing the Gaussian copula
of T and S. The K(2K − 1) unique elements of this
correlation matrix C are excessive for the purposes of
parameterization, so we will seek an appropriate model of
C with one or several length scale parameters, following
the work of Gaspari and Cohn (1999) and Gaspari et al.
(2006); (2) The GEV distributions used for FTk

and
FSk

each have three parameters (a location, scale, and
shape parameter) which are roughly equivalent to the
specification of the mean, variance, and skewness for
each of temperature and saturation ratio. These will be
prognosticated following the lead of Tompkins (2002).
A suitable diagnostic or prognostic parameterization for
the correlation length scales used to model C will also be
needed; (3) The marginal-estimated layer cloud fractions
and the copula-estimated column cloud fraction can be
output as diagnostics. The radiative transfer calculations
will use the Gaussian copula generator (§11.1) as an
alternative to the more empirical generator of Räisänen
et al. (2004) in the implementation of the Monte Carlo
ICA method of Räisänen and Barker (2004).

We also envisage the usefulness of such a copula-
based GCM cloud parameterization within the context of
data assimilation for NWP applications. The high hori-
zontal and vertical resolution cloud data available from
current satellites (e.g., from MODIS on EOS Terra and
Aqua, and from CloudSat and other A-Train satellites) and
anticipated from future satellite missions (e.g., NPOESS)
holds a wealth of statistical information on the distribu-
tion of cloud water inside GCM-sized gridcolumns. We
envisage the use of this cloud data to update the marginal
and copula parameters of the new GCM parameterization
using a parameter estimation approach (e.g., Norris and
da Silva, 2007; Dee and da Silva, 1999; Dee et al., 1999).
In this way the information from high-resolution satellite
observations can be incorporated into global analyses.
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Figure 5. Errors in 〈ψ〉χNS
w.r.t. the 〈ψ〉GCE

ICA reference for the shortwave transmittance and reflectance, ψ = TRN and RFL, and
NS = 2, 4, . . . , 1024. Each NS group shows five methods, from left to right: χ = GCE (green), GCOP (orange), XOR (blue), MAX
(red), and RAN (magenta). The horizontal offset within each group is for viewing ease only. The thick vertical lines show the inter-quartile
range among 1000 independent evaluations. The thin vertical lines are the 2.5%–97.5% percentile ranges. The horizontal lines show the

biases in 〈ψ〉χICA, i.e., the error in the mean ψ over all 16384 χ-generated subcolumns, as per Table II.
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Figure 6. As for Figure 5, but for the longwave quantities ψ = DLR and OLR, the downwelling flux at the surface and outgoing flux at
TOA, respectively.
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A Copulas for multiple cloud layers

One commonly applied assumption is that vertically sep-
arated cloud blocks (i.e., vertically contiguous blocks of
at least partially cloudy model layers, separated by com-
pletely clear model layers) are randomly overlapped. We
shall call this the “Random Overlap Across Clear Layers”
or ROACL assumption. Say there are M such blocks of
cloud, defined by

{f ′(1)1 , . . . , f
′(1)
K(1)}, . . . , {f

′(M)
1 , . . . , f

′(M)

K(M)},

such that all of the included model layers are at least
partially cloudy (i.e., all f ′(j)k < 1). The column clear
fraction for block (j) is

f ′(j) = C
(j)
S (f ′(j)1 , . . . , f

′(j)
K(j)),

where C
(j)
S is the marginal copula for block (j) layers

only. Then, since the blocks are randomly overlapped, the
clear fraction for the entire column is given by

f ′ROACL = ΠM
j=1C

(j)
S (f ′(j)1 , . . . , f

′(j)
K(j)).

One common subset of ROACL are the maximum-random
overlap schemes. The Tian and Curry (1989) version,
which we will denote MRO, specifies maximum cloud
overlap within blocks, and so has

f ′MRO = ΠM
j=1 min(f ′(j)1 , . . . , f

′(j)
K(j)).

B Multinormal Random Number Generation

A multinormal random vector Z = (Z1, . . . , Z2K)T ∼
N2K(0,C), where C is a strictly positive definite correla-
tion matrix, can be generated as follows: Z = HG where
H is the lower-triangular Cholesky decomposition of C,
such that C = HHT and H has strictly positive diagonal
entries, and G = (G1, . . . , G2K)T is a vector of indepen-
dent standard normal variates, i.e., each Gk ∼ N(0, 1)
independently.

For the two dimensional case (K = 1),

C =
(

1 ρ
ρ 1

)
and H =

(
1 0
ρ

√
1− ρ2

)
, (32)

where ρ ∈ (−1, 1) is the correlation coefficient, and Z =
(G1, ρG1 +

√
1− ρ2G2)T has a particularly simple form.

C Maximum Overlap Generator

In §6.1.2 we noted that “maximum cloud overlap” in
K layers can be represented by the “M-copula”, i.e.,
using CS(r1, . . . , rK) = min(r1, . . . , rK). The areal den-
sity in rank space is therefore zero off the the main
diagonal of IK , suggesting that a simulation scheme for
the ranks should use the same uniform rank for each
dimension. Namely if we select random rank vectors R ≡
(U, . . . , U)T ∈ IK , where U is uniformly distributed on
[0, 1], then for infinite samples,

Fr(R1 ≤ r1, . . . , RK ≤ rK) = Fr(U ≤ r1, . . . , U ≤ rK)
= Fr(U ≤ min(r1, . . . , rK)) = min(r1, . . . , rK),

as required. It is clear, then, that the M-copula gives the
maximum possible correlation between all the K ranks.

The definition of “maximum overlap” in the 2K
space (T ,S) is not as trivial. We still want

CS(r1, . . . , rK) = CT ,S(1, . . . , 1, r1, . . . , rK)
= min(r1, . . . , rK),

so that the maximum cloud overlap formula (9) applies.
We would also like each marginal intra-layer copula
CTk,Sk

to be realistic in its representation of the rank
dependency of T and S within the layer.

Say our rank generation procedure, to be
determined, produces a sample rank vector
R ≡ (U1, . . . , UK , V1, . . . , VK)T and corresponding
physical quantities T ≡ (F−1

T1
(U1), . . . , F−1

TK
(UK))T

and S ≡ (F−1
S1

(V1), . . . , F−1
SK

(VK))T . One simulation
strategy would be to choose a common S rank for
each layer, Vk = V , with V distributed uniformly on
[0, 1], but to generate a separate Uk for each layer
consistent with specified CTk,Sk

, namely, so that
Fr(Uk ≤ u, V ≤ v) = CTk,Sk

(u, v), where the copula
on the right hand side has been predetermined from the
observed rank dependence between Tk and Sk alone.

For example, if CTk,Sk
is a Gaussian copula then,

per §11.1 and Appendix B, we may generate ranks from
it as (Uk, V ) = (Φ(ρkGS + ρ′kGT ),Φ(GS)), where ρk ∈
(−1, 1) is the correlation coefficient of ZTk and ZSk and
ρ′k ≡

√
1− ρ2

k ∈ (0, 1], and where GS and GT are inde-
pendently distributed random variates ∼ N(0, 1). Using
a common GS for all layers enforces a maximum rank
correlation in S. However, let us also assume that GT is
common to all layers, in order to enforce a measure of rank
correlation in T as well, while at the same time maintain-
ing a separate intra-layer Gaussian copula for each layer,
characterized by ρk. Then

CT ,S(u1, . . . , uK , v1, . . . , vK)
= Fr(U1 ≤ u1, . . . , UK ≤ uK , V ≤ v1, . . . , V ≤ vK)
= Fr(GT ≤ min(g1(V ), . . . , gK(V )),

V ≤ min(v1, . . . , vK))

=
∫ min(v1,...,vK)

0

Φ(min(g1(V ), . . . , gK(V )) dV,
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where gk(V ) ≡ ρ′k
−1[Φ−1(uk)− ρkΦ−1(V )]. For ρk =

0, ρ′k = 1 and gk = Φ−1(uk). If ρk = 0 for every
k, then Φ(min(g1(V ), . . . , gK(V )) = min(u1, . . . , uK)
andCT ,S(u,v) = min(u1, . . . , uK) min(v1, . . . , vK), i.e.,
each of T and S is independently maximally rank-
correlated. For general ρk, note that limuk→1 gk(V ) = ∞
and so CS(v) = CT ,S(1, . . . , 1,v) = min(v1, . . . , vK), as
required.
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Räisänen P, Barker HW, Khairoutdinov MF, Li J, Ran-
dall DA. 2004. Stochastic generation of subgrid-scale
cloudy columns for large-scale models. Q. J. R. Meteor.
Soc. 130: 2047–2068.

Sancetta A. 2005. Copula based monte carlo inte-
gration in financial problems. Cambridge Working
Papers in Economics 0506, Faculty of Economics (for-
merly DAE), University of Cambridge. Available at
http://ideas.repec.org/p/cam/camdae/0506.html.

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–17 (2007)
DOI: 10.1002/qj



REPRESENTING CLOUD FIELDS USING COPULAS 17

Smith RNB. 1990. A scheme for predicting layer clouds
and their water content in a general circulation model.
J. Q. R. Meteorol. Soc. 116: 435–460.

Tian L, Curry JA. 1989. Cloud overlap statistics. J.
Geophys. Res. 94: 9925–9935.

Tompkins AM. 2002. A prognostic parameterization for
the subgrid-scale variability of water vapor and clouds
in large-scale models and its use to diagnose cloud
cover. J. Atmos. Sci. 59: 1917–1942.

Tompkins AM. 2003. Impact of temperature and humidity
variability on cloud cover assessed using aircraft data.
Q. J. R. Meteorol. Soc. 129: 2151–2170.

Xu KM, Randall DA. 1996. Evaluation of statisti-
cally based cloudiness parameterizations used in cli-
mate models. J. Atmos. Sci. 53: 3103–3119.

Zeng X, Tao WK, Zhang M, Peters-Lidard C, Lang S,
Simpson J, Kumar S, Xie S, Eastman JL, Shie CL,
Geiger JV. 2007. Evaluating clouds in long-term cloud-
resolving model simulations with observations. J.
Atmos. Sci. In Press.

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–17 (2007)
DOI: 10.1002/qj


